
IC PIRACY PROTECTION BY APUF AND LOGIC OBFUSCATION

RICE UNIVERSITY

JANUARY 2014

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2014-018

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2014-018 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S /
GARRETT S. ROSE
Work Unit Manager

 / S /
MARK H. LINDERMAN
Technical Advisor, Computing
 & Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JAN 2014
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

NOV 2011 – AUG 2013
4. TITLE AND SUBTITLE

IC PIRACY PROTECTION BY APUF AND LOGIC
OBFUSCATION

5a. CONTRACT NUMBER
FA8750-12-2-0062

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
65502D

6. AUTHOR(S)

F. Koushanfar, J. Kong

5d. PROJECT NUMBER
T2HW

5e. TASK NUMBER
RI

5f. WORK UNIT NUMBER
CE

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Rice University
6100 S. Main, MS-380
Houston TX 77005

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2014-018
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
A strong physically unclonable function (PUF) is a circuit structure that extracts an exponential number of unique chip
signatures from a bounded number of circuit components. The strong PUF unique signatures can enable a variety of low
overhead security and intellectual property protection protocols applicable to several computing platforms. This paper
proposes a novel lightweight (low overhead) strong PUF based on the timings of a classic processor architecture. A
small amount of circuitry is added to the processor for on-the-fly extraction of the unique timing signatures. To achieve
desirable strong PUF properties, we develop an algorithm which leverages intentional post-silicon aging to tune the inter-
chip and intra-chip signature variation. Our evaluation results show that the new PUF meets the desirable inter- and
intra-chip strong PUF characteristics, while its overhead is much lower than the existing strong PUFs. For the processors
implemented in 45nm technology, the average inter-chip Hamming distance for 32-bit responses is increased by 16.1%
after applying our post-silicon tuning method; the aging algorithm also decreases the average intra-chip Hamming
distance by 98.1% (for 32-bit responses).
15. SUBJECT TERMS

Aging, processor-based PUF, strong PUF

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
GARRETT S. ROSE

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

42

TABLE OF CONTENTS
1. Summary .. 1

2. Introduction .. 1

3. Methods, Assumptions and Procedures ... 4

3.1 Background and Preliminaries .. 4
3.1.1 Process variation ... 4
3.1.2 Delay model .. 5
3.1.3 Aging model .. 5

3.2 Two-core PUF ... 6
3.2.1 Design philosophy and design decisions ... 6

3.2.1.1 Base platform - multi-core microprocessor…. ... 6
3.2.1.2 Path delay source - ALUs ... 6

3.2.2 Overall design ... 8
3.2.2.1 PUF design…. .. 8
3.2.2.2 Security enhancement by XOR obfuscation .. 8

3.2.3 Detailed design and architectural modifications ... 10
3.2.4 Challenge procedure .. 11
3.2.5 Practicality issues .. 12

3.2.5.1 Intermediate signal fluctuations in the output port 12
3.2.5.2 Sorting of the valid and invalid output bits .. 13
3.2.5.3 Runtime temperature difference between two cores 13

3.2.6 Implementation overhead .. 14
3.3 Post-silicon tuning of two-core PUF via intentional aging ... 15

3.3.1 High-level description of our post-silicon tuning .. 15
3.3.1.1 Rationale…. ... 15
3.3.1.2 Strategy .. 16
3.3.1.3 Figuring out the input vectors for aging ... 17
3.3.1.4 Sample spaces to measure the statistical properties 20

3.3.2 Aging algorithm to increase inter-chip variations ... 20
3.3.3 Aging algorithm to reduce intra-chip variation ... 21
3.3.4 Reliability and security discussions on aging .. 23

3.3.4.1 Malicious usage of our algorithm…... 23
3.3.4.2 Natural aging and recovery due to the NBTI…. .. 23

4. Results and Discussion .. 24

4.1 Evaluation setup .. 24
4.2 Statistical results for two-core PUFs ... 24

4.2.1 Inter-chip variations…. .. 25
4.2.2 Intra-chip variations ... 26

4.3 Statistical results for post-silicon tuning ... 26
4.3.1 For inter-chip variation improvement…. ... 26
4.3.2 For intra-chip variation reduction .. 29

5. Related work .. 29

i

5.1 Physically Unclonable Functions (PUFs) ... 29
5.2 Leveraging aging to PUFs and circuits ... 30

6. Conclusion ... 31

7. References .. 32

ii

LIST OF FIGURES AND TABLES
Figure. 1. Four process variation map examples generated by quad-tree process variation model
[1]. The number in the right side of the figures means Z value of Gaussian distribution.………….4
Figure 2: The basic structure of our two-core PUF (bitwidth=4-bit).…..…………..……….….......7
Figure 3: Additional logic for XOR obfuscation.……………………..………………..……..…....9
Figure 4: Inter-response Hamming distance variations when 10,000 random different inputs are
fed into the two-core PUF. The x-axis and y-axis corresponds to the Hamming distances and
probability mass function.…………………………………...……………………………….....…..9
Figure 5: A more detailed structure of our two-core PUF. For simplicity, only one arbiter and one
temporary register (flip-flop) are shown in the figure. The XOR obfuscation logic is drawn in a
dashed-line since it is an optional logic.......……………………………………..………………..10
Figure 6: An example challenge program (instruction sequence) for one-time PUF query
(bitwidth=32-bit)…………………………………………………………………………………..11
Figure 7: Selection of the valid PUF outputs by using a MUX.…………………………………..13
Figure 8: i-th full adder structure in the two-core PUF……………………………………………16
Figure 9: Input vector generation for our intentional aging process……………………………....17
Figure 10: Average inter-chip Hamming distance results with regard to the number of iterations (k)
in Alg. 1………………………………………………………………………………...………….27
Figure 11: Average intra-chip Hamming distance results with regard to the number of iterations (k)
in Alg. 2..……..………………………………………………………………………………...….28
Figure 12: Average intra-chip Hamming distance of bit i (i=1-32) results within 32-bit responses
before and after applying Alg. 2 with k=20.…..…………………………………………..…...….28
Table 1: A truth table of full adders………………………………………………....…………….18
Table 2: Stress/recovery period ratio and duty cycle of each gate in a full adder (FA)….………..18
Table 3: Average inter-chip Hamming distance results……………………………......………….25
Table 4: Average intra-chip Hamming distance variation results under 1,000,000 different
challenge inputs..……………………………………………………………………………….….25
Table 5: Average inter-chip Hamming distance results before and after our intentional aging
process.…………………...………………………………………………………………….…….27

iii

1 SUMMARY

A strong physically unclonable function (PUF) is a circuit structure that extracts an

exponential number of unique chip signatures from a bounded number of circuit components.

The strong PUF unique signatures can enable a variety of low overhead security and

intellectual property protection protocols applicable to several computing platforms. We

propose a novel lightweight (low overhead) strong PUF based on the timings of a classic

processor architecture. A small amount of circuitry is added to the processor for on-the-fly

extraction of the unique timing signatures. To achieve desirable strong PUF properties, we

develop an algorithm which leverages intentional post-silicon aging to tune the inter-chip and

intra-chip signature variation. Our evaluation results show that the new PUF meets the

desirable inter- and intra-chip strong PUF characteristics, while its overhead is much lower

than the existing strong PUFs. For the processors implemented in 45nm technology, the

average inter-chip Hamming distance for 32-bit responses is increased by 16.1% after

applying our post-silicon tuning method; the aging algorithm also decreases the average

intra-chip Hamming distance by 98.1% (for 32-bit responses).

2 INTRODUCTION

Achieving secure and trustworthy computing and communication is a grand challenge.

Several known data/program security and trust methods leverage a root of trust in the

processing units to achieve their goals. Microprocessors and other heterogeneous processing

cores – which form the kernels of most modern computing and communication – have

become increasingly mobile, limiting the amount of available energy and resources.

Traditional security and trust methods based on classic cryptography are often

computationally intensive and thus undesirable for low power portable platforms. Mobility

and low power also favor smaller and simpler form factors that are unfortunately known to be

more susceptible to attacks such as side-channels or invasive exploits.

There is a search for low overhead and attack-resilient security methods that operate on

low power computing platforms. Physically unclonable function (PUF) is a promising circuit

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
1

structure to address the pending security needs of several portable and resource-constrained

computing platforms. Thanks to the unique and unclonable process variations (PVs) on each

chip, PUFs can generate specific signatures for each manufactured IC. Technically, PVs

mainly affect threshold voltage (Vth) or effective gate length (Leff) of the devices in a chip

[1][2]. These unique device characteristics can be measured by the structural side-channel

tests such as timing or current of specific test vectors. To ease integration into higher-level

digital security primitives, it is desirable to transform the measured structural test results to

digital values. The unclonability and inherent uniqueness properties of signatures makes PUF

an attractive security primitive choice [3].

PUF signatures are typically extracted by a challenge-response protocol. In response to a

challenge (or input), the PUF generates a unique response (or output) that is dependent on the

specific PV of the underlying chip. PUFs have been classified into two broad categories:

Weak and Strong. Weak PUFs have a limited number of challenge-response pairs (CRPs),

which restricts their application scenarios to those requiring a few secret bits such as key

generation. Strong PUFs generate an exponential number of CRPs from a limited number of

circuit components. Strong PUFs enable a wider range of security and trust protocols by

leveraging their huge space of CRPs.

Although the already proposed strong PUFs have shown promising results [4], their

application is still limited due to their non-negligible overhead and instability. For example,

AEGIS secure processor design [5] which realizes a trustworthy hardware platform, has a

non-negligible hardware overhead of the added logic including the arbiter PUF for supporting

secure execution. Apart from the PUF logic itself, a large portion of hardware overhead often

comes from error correction logic. Since PUFs should be able to produce stable outputs under

various environmental conditions (e.g., voltage and temperature fluctuations), error correction

logic overhead is inevitable, yet desired to be reduced. Moreover, natural PUFs may have

undesirable statistical distributions in terms of inter-chip variations, which significantly

restricts their practical applicability. The statistical distribution becomes even worse when

spatial correlations between the device characteristics due to process variation (in particular,

systematic variations) are prevalent across the chips.

In this report, we introduce an alternative strong PUF architecture, based on a

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
2

conventional multi-core processor. Our PUF design is a realization of a low overhead and

stable strong PUF. By leveraging the built-in structures (adders in ALUs) in typical

multi-core microprocessors instead of building additional delay logic (e.g., a series of

switches and a series of inverter chains in arbiter PUFs and ring oscillator (RO) PUFs [6],

respectively), our design realizes a low-overhead and secure strong PUF which can be

employed to many security applications. A proof-of-concept implementation is demonstrated

on a two-core architecture where the design is fundamentally based on the delay comparison

mechanism of arbiter PUFs. To further improve security, reliability, and stability of the PUFs

as well as make up for possible drawbacks of the two-core PUF design, we also propose a

systematic post-silicon tuning method for our PUF. Our new algorithm leverages an

intentional aging method based on one of the most significant circuit aging mechanisms:

negative bias temperature instability (NBTI) [7]. Our proposed post-silicon aging algorithm

does not incur any performance overhead in most of the chips by careful consideration of

selecting the gates that will be intentionally aged. Also, our algorithm greatly improves

statistical properties of our PUF design in terms of both inter-chip and intra-chip variations.

Our main contributions include:

 We propose a low overhead strong PUF design, two-core PUF, which leverages

built-in components in general processor architectures;

 Our new PUF design shows good statistical results, comparable to the previously

proposed strong PUF designs. The hardware overhead of the new PUF is lower

than the previously proposed ones;

 We propose a systematic method to further enhance statistical properties of our

multi-core PUF in terms of both inter-chip and intra-chip variations by leveraging

intentional aging, which complements the possible drawbacks of our PUF design;

 Our simulation results on a two-core architecture prove that our intentional aging

algorithms successfully improve the statistical property of the two-core PUF with

negligible performance overhead in most cases.

The rest of this report is organized as follows. Section 3.1 outlines background

information for process variation, delay model, and circuit aging mechanism/model. Section

3.2 explains our two-core PUF design while Section 3.3 introduces our systematic tuning

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
3

Figure 1: Four process variation map examples generated by quad-tree process variation
model [1]. The number in the right side of the figures means Z value of Gaussian

distribution.

method by leveraging intentional aging to tune the statistical properties of the introduced PUF.

Evaluation results for the two-core realization and intentional aging algorithms are discussed

in Section 4. Section 5 provides a brief review of the recent literatures regarding PUFs and

intentional post-silicon aging methods. Lastly, we conclude in Section 6.

3 METHODS, ASSUMPTIONS AND PROCEDURES

3.1 Background and preliminaries

In this section, we provide general background information and preliminaries for process

variation, delay, and aging mechanism. The background and preliminaries are to make the

report self-contained and accessible to a broader audience who may not be familiar with

process variation, delay model, and aging.

3.1.1 Process variation

Process variation (PV) generates inherent randomness in silicon structures. PV mainly

affects threshold voltage (Vth) and effective gate length (Leff) of devices, resulting in various

side-effects (e.g., delay and power consumption) across chip instances.

PV can be classified into two broad categories: random and systematic variation. Random

variation is caused by random dopant fluctuations or random defects in devices. Random

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
4

variation does not have any spatial correlation between the devices. Unlike random variation,

systematic variation incurs spatially correlated device fluctuations. It means that the devices

which are close together have a higher probability to have similar device characteristics than

those located far away. In contemporary process technologies, both random and systematic

variation coexist in manufactured chips.

Figure 1 shows sample Vth distribution maps generated by a quad-tree PV model [1]. Vth

distribution is shown to be fairly random in a single chip as well as across the chips, while

similar colors tend to agglomerate together (i.e., Vth distributions are spatially correlated).

3.1.2 Delay model

To figure out the Vth-dependent gate delay, we use the delay model described in [8]. The

gate-level delay model can be represented as follows:

 (1)
where ϕt and σ are thermal voltage and subthreshold slope, respectively. There are several

other key factors that affect gate-level delay: supply voltage (Vdd), threshold voltage (Vth),

and effective gate length (Leff). Due to process variations, these factors fluctuate, which in

turn results in delay differences across the gates in chips. Furthermore, circuit aging (it will be

covered in detail in Section 3.3) also affects gate delay since circuit aging increases Vth of the

gate.

3.1.3 Aging model

Circuit aging is a phenomenon in which performance of the circuits is degraded by the

circuit usage. This may eventually result in a malfunction of the circuit under intensive

utilizations or extreme environmental conditions (e.g., extremely high temperature).

Compared to fresh chips (i.e., not aged), aged chips have relatively lower performance due to

Vth shift by hot carrier injection (HCI) and negative bias temperature instability (NBTI). Vth

of devices is continuously increased as those devices are switched or have a high duty cycle,

resulting in higher delay and lower power consumption.

In deep submicron process technologies, NBTI is known to be the most threatening aging

mechanism [7]. Thus, in this work, we consider NBTI as our main aging mechanism. The Vth

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
5

shift (ΔVth) by NBTI is commonly modeled as follows:

 (2)

where Vg and Eα are gate voltage and activation energy respectively. A and B are technology

dependent constants. As shown in Equation 2, the Vth shift heavily depends on temperature

(T) and stress time (t). By applying this aging model, one can derive an appropriate stress

time (t) under a certain temperature (T) to intentionally increase a certain amount of Vth.

Stress time t is strongly dependent on the signal probability (SP) [9] that represents a

fraction of time when a gate output stays logic high (1) during the circuit operation.

Depending on SP of a gate, Vth of the gate will be increased (stress period) or decreased

(recovery period). Hence, to make the gate intentionally aged, one should carefully determine

SP of the gate so that it stays in the stress period much more than in the recovery period.

3.2 Two-core PUF

3.2.1 Design philosophy and design decisions

3.2.1.1 Base platform - multi-core microprocessor

Since our design is fundamentally based on the delay comparison mechanism of arbiter

PUFs, we need symmetric (homogeneous) structures to generate diverse path delays affected

by process variations. The symmetric multi-core microprocessor is one of the best design

candidates since most commodity microprocessors (or microcontrollers) have multiple

homogeneous cores. Typical strong PUF designs have separate delay circuits to generate PUF

responses, which incur additional area and power overhead. In contrast, our PUF design

utilizes built-in components in typical multi-core microprocessors, which minimizes

additional hardware and communication overhead. Compared to the AEGIS design [5] which

employs separate switches to implement an arbiter PUF, our design is implementable with a

much smaller logic overhead.

3.2.1.2 Path delay source - ALUs

Our design chooses ALUs as path delay sources. The main reason is that ALUs can accept an
exponential number of operands, which can also be used as challenge inputs. Moreover, they can
generate challenge-dependent responses when using add instructions by stimulating the complex
carry-chains in adder structures. Add instructions can have an

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
6

Figure 2: The basic structure of our two-core PUF (bitwidth=4-bit).

exponential number of different operands (264 with 32-bit operands) and our PUF can also

generate an exponential number of diverse responses depending on the challenge inputs as

well as disorders in silicon structures. It means our ALU-based PUF design can be classified

as a strong PUF.

The other reason for choosing ALUs as path delay sources is that ALUs are built from

combinational logic in microprocessors and they have delay paths which are comprised of a

long series of gates. Using the path delay of ALUs also increases the difficulty for an

adversary to perform a model building attack. This is because the adversaries should

perform multiple stages of gate-level delay table lookups and additions to obtain the accurate

path delays through their PUF model. Determination of carry propagation behaviors also

introduce a lot of control dependencies, which means it is difficult for adversaries to exploit

the massively parallel computations in order to acquire a PUF response time comparable to

that from the real PUF hardware. In this case, one can give a timing constraint (time-bound)

during the PUF challenge in order to distinguish the real PUF and the modeled PUF.

Time-bounded authentication by PUF has been introduced earlier [10].

Our PUF design can be applied to any adder structures, though in this work we build our

PUF based on ripple-carry adders (RCAs) as a proof-of-concept. In fact, PUFs are broadly

used in small embedded systems (e.g., sensor nodes or RFIDs) [11][12] or FPGAs

Challenge program

Arbiter2

Arbiter1

These challenge
programs are
exactly same

Arbiter4

Arbiter3

S1

ALU in
Core0

ALU in
Core1

Operand A1
Operand B1
Operand A2
Operand B2

Operand A3
Operand B3
Operand A4
Operand B4

Challenge program

Operand A1
Operand B1
Operand A2
Operand B2

Operand A3
Operand B3
Operand A4
Operand B4

S2

S3

S4

S1

S2

S3

S4

Response1

Response2

Response3

Response4

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
7

[13][14][15] in which RCAs are more beneficial for energy-efficiency than high-performance

adders such as carry-lookahead adders (CLAs). Note that the first design consideration of

those embedded systems is typically energy-efficiency, not performance.

3.2.2 Overall design

3.2.2.1 PUF design

Delay-based PUFs [6] exploit delay differences between multiple paths which have

inherently different delays across chips due to process variations. One may deploy arbiters (or

counters/comparators in case of ring-oscillator PUFs) to capture the delay difference between

two delay lines and convert it into a digitized value. In this work, we propose an alternative

strong PUF design which utilizes already built-in components in a processor architecture as

our delay lines instead of building separate delay lines (e.g., a series of the switches in arbiter

PUFs or a series of the inverters in ring oscillator PUFs).

Although our new strong PUF can be built based on any multi-core processor architecture,

in the remainder of the report we focus on a two-core proof-of-concept design. Generalization

to more cores is straightforward. Figure 2 shows a high-level design of our two-core PUF. For

simplicity, we provide a simple 4-bit two-core PUF design in this figure. Our PUF utilizes

arithmetic logic units (ALUs) in the multi-core microprocessors/controllers as symmetric

delay lines. In order to give a challenge input to the PUF, the identical challenge program

runs in both cores. As shown in Figure 2, two 4-bit operands (operand A and B) are fed into

each ALU and a 4-bit output (S1~ S4) can be obtained from each ALU. For delay comparison,

the n-th output lines (Sn) from each ALU are connected to the n-th arbiter (Arbitern). The

challenge program should start at the same cycle in both cores to guarantee correct PUF

operations. Note that the arbiters in the circuit layout should be very carefully placed for

correct operations of the two-core PUF. In addition, the wire lengths from two ALUs to the

arbiter should be symmetric not to generate biased PUF outputs.

In our proof-of-concept example, bitwidth of our base microprocessor is 32-bit. Hence,

each core has a 32-bit ALU. Sn from Core0 and Core1 are connected to the Arbitern, where n

is 1-32. Thus, we need 32 arbiters for delay comparison. Note that our design can be easily

extended to 64-bit microprocessors by simply adding 32 more arbiters and connecting the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
8

corresponding ALU output ports to those arbiters.

Figure 3: Additional logic for XOR obfuscation.

Figure 4: Inter-response Hamming distance variations when 10,000 random different
inputs are fed into the two-core PUF. The x-axis and y-axis corresponds to the Hamming

distances and probability mass function.

3.2.2.2 Security enhancement by XOR obfuscation

Typical security applications desire a high inter-response variation (i.e., high unpredictability). A
low inter-response variation may make the PUF vulnerable to the modeling attack [16] because
only a small set of CRPs may enable an accurate modeling of a specific PUF by adversaries. For

better inter-response variations of our PUF design, one can deploy an additional XOR obfuscation
step between two different response bits as described in [17]. By paying a little more hardware

cost, one can perform an XOR operation between

0
0
1
0

Response1

1
0
0
1

.
.

.
.

.
.

32
response

bits

.
.

.

1

0

1

1

Final output1

.
.

.

Response2

Response3

Response4

Response17

Response18

Response19

Response20

Final output2

Final output3

Final output4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

Before XOR

After XOR

Pr
ob

ab
ili

ty
 M

as
s

Fu
nc

tio
n

Inter-response variation (64-bit)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Before XOR

After XOR

Pr
ob

ab
ili

ty
 M

as
s

Fu
nc

tio
n

Inter-response variation (32-bit)

(a) with 32-bit PUF outputs (b) with 64-bit PUF outputs

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
9

Figure 5: A more detailed structure of our two-core PUF. For simplicity, only one

arbiter and one temporary register (flip-flop) are shown in the figure. The XOR
obfuscation logic is drawn in a dashed-line since it is an optional logic.

i-th bit and (i+bitwidth/2)-th bit from a response, as shown in Figure 3. PUF operations

should be performed twice with different challenges in order to generate a bitwidth-bit

response, which also incurs timing overhead. Considering the trade-off among the hardware

cost, performance, and security, one can employ the additional XOR obfuscation step only for

the case where a high level of security is required.

As shown in Figure 4, the inter-response variation is greatly improved by adding the

XOR obfuscation step. Comparing between the case with and without XOR obfuscation, an

average inter-response Hamming distance is increased from 5.06 bits to 10.64 bits and from

11.81 bits to 20.53 bits when using 32-bit and 64-bit two-core PUF, respectively.

3.2.3 Detailed design and architectural modifications
Delay characteristics in our PUF depend on the carry propagation behavior in the conventional
ripple-carry adder (which is included in ALUs). As shown in Figure 5, two operands (Ai and Bi) are
fed into the full adders. Between the full adders, there are carry bits (Ci), which depend on the
operands (Ai and Bi) and previous carry bit (Ci-1). Depending on

1-bit
Full adder

1-bit
Full adder

1-bit
Full adder

.. .

A1 B1

Q

From the
other core

D

C1 C2 C3

S1 S2 S3

PUF
Response1

.. .

A2 B2 A3 B3

.. .

XOR

Arbiter1

.. .

PUF
Response32

C0

Final output (16-bit or 32-bit)

Stored into $rp

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
10

Figure 6: An example challenge program (instruction sequence) for one-time PUF

query (bitwidth=32-bit).

the carry bit, delay characteristics of the full adder rely on those of either the preceding full

adders or only the current full adder. These carry propagation behaviors generate an

exponential number of the signal propagation behaviors in the adder, which eventually

enables a generation of challenge-dependent PUF outputs. The summation result bits (Si)

from the ALU (in each core) are connected to the arbiters. Si is also connected to the ALU

output storage which is already implemented in general processor architectures, though it is

not shown in Figure 5. The signals from two separate ALUs race to the arbiter, which in turn

generates a digitized output depending on which delay line is faster. The arbiter output is

stored to a temporary register (‘PUF Responsei’ in Figure 5).

As we explained in Section 3.2.2, the response bits may be XOR-ed together (i-th bit ⊕

(i+bitwidth/2)-th bit) and the XOR-ed results are finally stored into one half of the final

output register ($rp: a special purpose register to store the output from the two-core PUF).

The other half of the output register is filled by performing the PUF operation once again with

different challenge inputs. After the results are stored to the PUF output register, the

challenge program can access this register for later usages.

3.2.4 Challenge procedure

In order to give challenge inputs to our two-core PUF, we utilize a software-level

challenge program. Figure 6 shows an example program for a PUF query based on MIPS

assembly codes. One-time PUF query is performed as follows. Before starting the PUF

operation, the operands (A and B) are loaded into the registers (Line 1-2 in Figure 6). The

actual PUF operation is performed by four consecutive addition operations (Line 3-6 in

Figure 6). Among these four add instructions, the instructions in Line 3 and 5 in Figure 6 are

used to initialize the ALU output ports to ‘0’ and ‘1’, respectively. In addition, these

instructions also initialize the signals in the carry propagation chains (from C1 to C32) to ‘0’.

An example assembly code for one-time PUF query
1 addi $1, $0, A (or from register) # load operand A to register r1
2 addi $2, $0, B (or from register) # load operand B to register r2
3 add $5, $0, $0 # initialization for delay measurement
4 add $3, $1, $2 # the first add operation - $r3=$r1+$r2
5 addi $5, $0, 0xffffffff # initialization for delay measurement
6 add $3, $1, $2 # the second add operation - $r3=$r1+$r2

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
11

The add instructions in Line 4 and 6 in Figure 6 are to perform an actual PUF operation by

stimulating the internal gates in the ALUs. The instructions in Line 3-4 and Line 5-6 are

dedicated to capture 0→1 and 1→0 transitions in the arbiter, respectively. In this work, we

use dual-trigger latches (arbiters) to capture both up (0→1) and down-transitions (1→0). Note

that the operating system can block the other program execution during the PUF operation to

prevent the unintended resource (ALU) sharing which may incur cycle-level discrepancy

between the two cores.

3.2.5 Practicality issues

Since our design utilizes an in-built structure (adder) instead of the specialized circuit for

PUF, some implementation issues may arise. In this subsection, we address several

practicality issues of the two-core PUF design.

3.2.5.1 Intermediate signal fluctuations in the output port

In the general circuit structures, there could be some ripples (fluctuations of the signal

before capturing the true signal) in the output port. If the multiple input ports are connected to

one output port, these fluctuations may occur because signal propagation delays from those

input ports connected to the output port are likely to be diverse. Therefore, if the path delay

sources for a delay-based PUF are generated from the general circuit structures, it could be

problematic due to the ambiguity of when to capture the transition signal in the arbiters (i.e.,

selecting the signal to capture).

However, in the case of a ripple-carry adder that constitutes the path delay sources in the

two-core PUF, the signal in the output ports fluctuates at most twice. In most cases, the first

and second output signal fluctuations result from the operands fluctuations (i.e., when Ai and

Bi are fed into the full adder) and carry propagations (i.e., a signal transition in Ci-1),

respectively. Once the carry signal (Ci-1) is converted from 0 to 1, it does not make a

transition into 0 again within one add operation, which restricts the maximum number of

possible transitions in the output port of the adder to 2.

There can be 6 different cases of signal fluctuations captured by the arbiter in our PUF: 0→1→0,

1→0→1, 0→1, 1→0, 0→0 (not fluctuating from 0), and 1→1 (not fluctuating from

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
12

Figure 7: Selection of the valid PUF outputs by using a MUX.

1). Among them, only the cases of 0→1 and 1→0 generate valid outputs in the arbiters. In the

other cases, the values generated in the arbiter are ignored. The following subsection

describes sorting of valid and invalid output bits.

3.2.5.2 Sorting of the valid and invalid output bits

In order to make use of only valid output bits, one may need additional MUXes between

the arbiter and temporary register to generate desired PUF outputs.

As shown in Figure 7, one can deploy a MUX between the arbiter and temporary register.

By referring to the control signal, the MUX selects the value either from the arbiter or from

the temporary register. Control signals can be generated by referring to the summation result

bit (Si). In the first phase of the PUF query, which corresponds to Line 3-4 in Figure 6, Si is

directly fed into the control port of the MUX. If Si is ‘1’, the MUX selects the value from the

arbiter whose output is generated by capturing 0→1 transitions.

Otherwise, the arbiter output is ignored by selecting the temporary register value in the

MUX. In contrast, the negation of Si is fed into the control signal of the MUX in the second

phase (Line 5-6 in Figure 6) to identify the valid arbiter output generated by capturing 1→0

transitions.

QD
Arbiteri

Si or ~Si 1 0

Temporary
Registeri

From Core0

From Core1

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13

3.2.5.3 Runtime temperature difference between two cores

Since our two-core PUF design is based on the structures in different processor cores,

there may be a temperature difference between two cores which may incur delay differences

(i.e., delay behavior may be biased). Since thermal behaviors of the two cores are likely to be

diverse depending on characteristics of the program previously executed before the PUF

operation, it may make our PUF responses different from the expected responses.

To deal with different thermal behaviors of two ALUs, we can employ thermal sensors to

detect the temperature difference between the ALUs. Typical microprocessors already have

the thermal sensors in their expected localized hotspots [18], which means one does not need

to deploy additional thermal sensors only for the two-core PUF. To guarantee the PUF

operation correctness, operating systems (OSes) can read the temperature from the thermal

sensors before the PUF operation begins. If there is a temperature difference between two

ALUs, the OS cools the hotter ALU down by enforcing the sleep mode. Though it may incur

performance overhead due to the sleep period in one core, the performance loss is

insignificant in the authentication process (i.e., it is not performed in general program runtime,

but only in authentication program runtime).

For a design-level solution, one can utilize two ALUs from one core in the case of

superscalar processors. The ALUs in one core are likely to have similar thermal behaviors due

to their close physical distance. Otherwise, one can also add redundant ripple-carry adders in

the microprocessor, which will yield a little more hardware overhead, though our PUF has

only a small implementation overhead (a detailed analysis on the hardware overhead will be

described in the following subsection).

3.2.6 Implementation overhead

Typical microprocessors or microcontrollers already have several cores or ALUs to

support multi-programmed/multi-threaded workloads or higher instruction-level parallelism

(ILP). Our PUF design realizes a strong PUF with much lower hardware overhead by

leveraging built-in components. Assuming one builds a two-core PUF based upon already

built-in ALUs in a 32-bit processor, an additional hardware cost is only arbiters, MUXes, and

temporary storage for 32-bit data. If one needs an additional XOR obfuscation stage, only

additional XOR gates are to be added. Even if one builds a two-core PUF without an

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
14

underlying processor architecture, our PUF design only needs 96 2-to-1 MUXes (or 288

NANDs), 128 XOR gates, 32 arbiters, and 32 flip-flops including the logic shown in Figure 7.

Compared to the conventional arbiter PUF (32-input/32-output), which needs 2048 2-to-1

MUXes and 32 arbiters, our PUF design incurs far less hardware cost. As a result, our PUF

design yields much lower area/power overhead compared to the conventional strong PUF

designs.

3.3 Post-silicon tuning of two-core PUF via intentional aging

3.3.1 High-level description of our post-silicon tuning

3.3.1.1 Rationale

Though our two-core PUF provides fairly good statistical distributions in general cases

(see Section 4.2), they do not necessarily produce good statistical properties in practice. In this

case, one may have to discard manufactured PUF chips due to the low quality statistical

properties, which results in yield losses of the chips.

The two possible problematic conditions for our manufactured PUFs include:

 Low inter-chip variations: This case may often happen (particularly for two-core

PUFs) because the two ALUs in each core are not close together, which may result

in systematic bias between two ALUs across the chip instances [19]. It can also be

incurred by suboptimal layouts (i.e., asymmetric placement of the arbiters and

different wire lengths between each ALU to the arbiters) as well as inherent process

variation. In this case, regardless of the process variation in chips, arbiter outputs

would be biased to either ‘0’ or ‘1’, which in turn results in losing the uniqueness of

the PUF instances (i.e., reduced randomness among the PUF outputs from different

chip instances).

High intra-chip variations: Delay-based PUFs are often susceptible to various environmental
conditions. PUFs should be able to produce stable outputs even under extreme environmental
situations. Fluctuating environmental conditions include voltage/temperature variation and
arbiter metastability. Since circuit delay is heavily dependent on the voltage/temperature
variations, the PUF output might also be diverse under voltage/temperature variations. Arbiter
metastability is another source

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
15

Figure 8: i-th full adder structure in the two-core PUF.

of PUF output instabilities. In general arbiter-based delay PUFs, if the delay difference

between two delay lines connected to one arbiter is less than the setup and hold time of the

arbiter, the PUF output is not stable and may fluctuate depending on environmental

conditions.

Manufactured PUF instances should avoid those two conditions that definitely degrade

quality of the PUFs. In this work, we introduce a systematic intentional aging method to make

the statistical quality of the two-core PUF much better in terms of both inter- and intra-chip

variations. Our aging method complements the possible drawbacks of our PUF design.

3.3.1.2 Strategy

Since the aging process is a one-way process and may degrade a circuit’s performance, a

careful intentional aging strategy is desired. In particular, our PUF design leverages in-built

structures as our path delay sources (i.e., not deploying additional dedicated circuits). In this

case, aging may in turn degrade the entire circuit performance. In pipelined processors,

though the execution stage where a processor performs ALU operations [20] does not

typically lie in the critical path [21], there will be a few chips which do have their critical path

in the execution stage and may be adversely affected by increased ALU delay after the

intentional aging process. Our aging strategy is to apply intentional aging only to the gates

which do not lie in the critical path of the adder. The reason for this is to guarantee that the

differences in delay between the critical path and non-critical paths are large for all

XOR1

NAND1

XOR2

NAND2
NAND3

Ai

Bi

Ci-1

Ci

Si

Arbiteri

i-th full adder in the two-core PUF

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
16

implementations of the adder. This increased difference in delay between the two paths

improves the reliability of the PUF in the context of environmental variations.

Figure 8 shows the structure of a full adder which is a substructure of our two-core PUF.

The critical path of the entire adder is a carry propagation chain (NAND2 and NAND3 gates),

which implies that the XOR1, XOR2, and NAND1 gates, except those in the last full adder

(FA), do not affect the critical path delay. In summary, the XOR1, XOR2, and NAND1 are

safe to apply the intentional aging while the NAND2 and NAND3 gates might be very

sensitive to the circuit’s entire performance. Thus, to minimize side-effects from the

intentional aging, we selectively apply intentional aging only to XOR1, XOR2, and NAND1

gates in the full adder.

A careful selection of the full adders that must be intentionally aged is also important. In

our PUF design, the n-th bit response is closely related to delay characteristics of the n-th full

adder. Our strategy is to utilize statistical metrics to determine which full adders have bad

statistical properties. First, we figure out which PUF output bits show a relatively bad

statistical quality by investigating its output behaviors (i.e., the probability of occurring ‘0’

and ‘1’ in each PUF output bit). And then, we choose the full adders which correspond to

those PUF output bit. Our main targets for intentional aging algorithms are XOR1, XOR2,

and NAND1 gates in the selected full adders.

3.3.1.3 Figuring out the input vectors for aging

Figure 9 shows how to generate input vectors for intentional aging. One input vector is an

operand A=0xffffffff (unsigned) and B=0x00000000 (unsigned) with an initial carry bit C0=1

(see Figure 5), assuming 32-bit two-core PUF is used. The first input vector (two operands) is

stationary regardless of which full adder (FA) is aged. For the other input vector, operand A is

an operand of all ‘0’ (A=0x00000000). The operand B of the second input vector has different

bit sequences depending on which full adders are intentionally aged. The i-th bit of the

operand B is ‘1’ if the i-th FA must be aged and the rest of bits are all ‘0’. For example, let us

suppose that the first and third FA should be aged. In this case, one can make the operand B

of the second input vector as 0x00000005 (i.e., within the 32-bit operand, only the first and

third bit are ‘1’ and all other bits are ‘0’). Note that the initial carry bit of the second input

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
17

Figure 9: Input vector generation for our intentional aging process.

vector should be ‘0’ (C0=0). For our aging process, the first and second input vectors are fed

into the two-core PUF alternately.

Our aging input vector generation leverages the stress and recovery mechanism of CMOS

NBTI [22]. When a gate has an output of ’1’, the current passes through the PMOS devices,

which means the gate is in the stress period of NBTI. Otherwise, the gate is in the recovery

period. Thus, to age a gate, one should enforce the gate in the stress period more than the

recovery period.

As we explained in Section 3.3.1.2, our goal is to age only XOR gates and NAND gate in

the full adder. The first input vector enforces all of the full adders to reside in the state 5 in

Table 1. In this cycle, XOR1, NAND1, and NAND3 gates are in the stress period (i.e., gate

output=1) while XOR2 and NAND2 gates are in the recovery period (i.e., gate output=0). In

the next cycle, by using the second input vector, the full adders which must be aged are

enforced to be in the state 2 in Table 1 while the other full adders are in the state 0.

Table 2 shows the ratio between the stress and recovery period when our first and second

aging input vector are alternately fed into the two-core PUF. As a result, only XOR1 and

NAND1 gate are aged while the other gates are minimally affected because the stress and

recovery period occur alternately. Though it seems that NAND1 gates are aged far more than

the other gates, NAND1 gates hardly affect output delays since they are neither directly

connected to the paths to the arbiters nor placed on the critical path of the adder.

NAND2 and NAND3 gates may also be a little aged together due to the partial recovery

1 1 1 1 1 1…

0 0 0 0 0 0…
0xf f f f f f f f
0x00000000

0 0 0 0 0 0…

0 0 0 1 0 0… The i-th bit: 1
The remaining bits: 0

i-th bit

Operand A
Operand B

Operand A
Operand B

First
input
vector

To apply the intentional aging to the i-th full adder

0x00000000

Initial carry bit (C0) = 1

Second
input
vector Initial carry bit (C0) = 0

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
18

mechanism of NBTI. In the case of stress period=50% and recovery period=50% (i.e., duty

cycle=0.5), the gate is aged 2~3 times less than the gate with a stress period of 100% [7].

However, assuming that one increases Vth by 0.1V via our aging process, the entire impact

on the critical paths of the adder is only 7.53% in the worst case. Note that increasing Vth by

0.1V is fairly sufficient to obtain a good statistical property of our PUF (detailed results will

be shown in Section 4.3). It means that our aging process hardly affects the entire circuit

performance because most processors have their critical path in the cache access (MEM stage)

or register file access pipeline stage (RF/ID stage) [21]. Note that there is no additional

hardware overhead required only for our intentional aging which can be performed with the

specialized input vectors or programs.

During our aging process, the wires as well as logic gates would be aged. However, the

NBTI aging mechanism mostly affects PMOS devices [7], which means the aging in wires is

negligible compared to the aging in the logic gates.

TABLE 1 A Truth Table Of Full Adders

State Ai Bi Ci-1 XOR1 XOR2 NAND1 NAND2 NAND3

0 0 0 0 0 0 1 1 0

1 0 0 1 0 1 1 1 0

2 0 1 0 1 1 1 1 0

3 0 1 1 1 0 1 0 1

4 1 0 0 1 1 1 1 0

5 1 0 1 1 0 1 0 1

6 1 1 0 0 0 0 1 1

7 1 1 1 0 1 0 1 1

TABLE 2 Stress/recovery period ratio and duty cycle of each gate in a full adder (FA)

 FA in which aging is applied FA in which aging is not applied

 Stress Period Recovery Period Duty cycle Stress Period Recovery Period Duty cycle

XOR1 100% 0% 1 50% 50% 0.5

XOR2 50% 50% 0.5 0% 100% 0

NAND1 100% 0% 1 100% 0% 1

NAND2 50% 50% 0.5 50% 50% 0.5

NAND3 50% 50% 0.5 50% 50% 0.5

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
19

For efficient intentional aging in the post-silicon stage, designers or manufacturers can

perform the intentional aging process with appropriately high temperature environment. We

also note here that the high temperature environment used in our intentional aging process

should not incur any break down in devices, but only accelerate aging process.

3.3.1.4 Sample spaces to measure the statistical properties

There are two types of the sample spaces which are used in our aging algorithms:

inter-chip sample space and intra-chip sample space.

 inter-chip sample space: it is composed of the PUF responses from different chip

instances when the same challenge input is fed. Note that one can feed a large

number of challenges to generate a representative and sufficiently large number of

inter-chip sample spaces. In this work, we give 1,000,000 random challenge inputs

to the PUF instances (i.e., we generate 1,000,000 inter-chip sample spaces).

 intra-chip sample space: the bit samples are the PUF responses from the same chip

with the same challenge under different environmental conditions. The sample space

is composed of 11 PUF responses and each response is extracted under different

environmental conditions. There are three factors considered to generate different

environmental conditions: voltage variation, temperature variation, and arbiter

metastability. For generating 11 different environmental parameters, the voltage and

temperature are randomly selected within the range of 1.0V-1.2V and 253K-393K,

respectively. Arbiter metastability is also considered as a source of unstable PUF

responses. For high representativeness of the samples, 1,000,000 different intra-chip

sample spaces are generated with 1,000,000 different challenge inputs for each chip

sample.

3.3.2 Aging algorithm to increase inter-chip variations

To increase inter-chip variations, one should make the probability occurring ‘0’ and ‘1’ as

close as possible for each response bit across PUF instances to minimize a bias in the

responses. For i-th PUF response bit, i-th full adder (FA) mainly contributes to the delay to i-

th arbiter. Thus, in the case that one tries to change the i-th bit response, one can selectively

apply the aging process to the i-th full adder. Depending on the occurring frequency of 0 and

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
20

1 for each response bit in the inter-chip sample spaces, one can determine which core’s i-th

full adder must be aged.

Alg. 1 shows a detailed algorithm to make inter-chip variations of the two-core PUFs

higher. For the input of this algorithm, the statistical distribution of the PUF responses in the

inter-chip sample spaces is required. To determine which core’s full adders must be aged, our

algorithm investigates the Pj which represents probability of occurring ‘1’ in j-th bit in the

inter-chip sample spaces (Line 4 in Alg. 1). In this work, when updating the PUF statistical

distributions with the generated inter-chip sample spaces, we use 1,000,000 random challenge

programs which are newly selected for each iteration. Thus, the bias towards a certain set

of challenges (i.e., 1,000,000 challenges used for updating the statistical distributions) is

removed. If Pj is greater than 0.6, it means that the j-th FA in the core0 tends to be faster than

that in the core1. Thus, our algorithm applies the aging process to the j-th FAs in Core0. Our

algorithm increases Vth of the XOR1 gate in the FA by 0.01V for each iteration of the

intentional aging process. The input vectors for our aging process are alternately fed into the

PUF until the Vth of the XOR1 gate is increased by 0.01V. By using Equation 2, one can

obtain an appropriate stress time to increase Vth by 0.01V under a certain temperature. The

input vector sequence for selectively applying the aging process to a specific FA is already

explained in Section 3.1.3. On the other hand, if Pj is less than 0.4, our algorithm applies the

aging process to j-th FAs in Core1 to make Core1’s FAs slower than before. This process is

iterated k times and the number of iterations (k) can be determined by considering the degree

Alg. 1: Algorithm for intentional aging to N-bit two-core PUF to increase
inter-chip variations.
Input: Statistical distribution of the PUF results in the inter-chip sample space
1 for i←1 to k // Main loop
2 Update PUF results and statistical distribution;
3 for j←1 to N
4 Pj←prob. of occurrence of ‘1’ in j-th bit within the responses across
different chip instances; (i.e., in the inter-chip sample spaces);
5 if(Pj ≥ 0.6)
6 Apply aging (Vth increment of 0.01V) to j-th FA in Core0;
7 if(Pj ≤ 0.4)
8 Apply aging (Vth increment of 0.01V) to j-th FA in Core1;
9 endfor
10 endfor

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
21

of the delay bias. Note that this algorithm is applied globally to the chips.

3.3.3 Aging algorithm to reduce intra-chip variation

To reduce intra-chip variation, one should make the delay difference between two delay

lines (which are connected to the arbiters) larger so that the PUF can be stable under a certain

degree of the environmental variabilities. By doing so, we try to make the probability of

occurrence of unstable PUF responses as low as possible.

Alg. 2 describes our algorithm to reduce intra-chip variations. With a given or updated

statistical distribution of the PUF responses in intra-chip sample spaces (as in Alg. 1, one

million random challenges which are newly chosen for each iteration are used), our algorithm

applies the aging process to make the PUF responses more stable. For j=1 to 32, if Pj is

greater than 0.5 (i.e., Core0’s j-th FA tends to be faster than Core1’s j-th FA), then our

algorithm ages the j-th FA in Core1 to make the delay difference between the FAs in Core0

and Core1 larger than before. Otherwise, our algorithm ages j-th FAs in Core0. Similar to Alg.

1, Vth of the XOR1 gate in the FA is increased by 0.01V for each iteration and the main loop

is repeated by k times. Unlike Alg. 1, Alg. 2 is individually applied to each chip.

Applying the intentional aging by using our algorithms may incur a huge post-processing

cost. In case that the huge post-processing overhead is expected, one can selectively apply the

Alg. 2 to the PUF chips of which stability does not meet a quality standard, which can be

determined by PUF designer or manufacturer considering the field usage of the PUFs. There

Alg. 2: Algorithm for intentional aging to N-bit two-core PUF to reduce
intra-chip variation.
Input: Statistical distribution of the PUF results in the intra-chip sample space
1 for i←1 to k // Main loop
2 Update PUF results and statistical distribution;
3 for j←1 to N
4 Pj←prob. of occurrence of ‘1’ in j-th bit from the responses in the
sample space across various environmental parameters; (i.e., in the intra-chip
sample spaces);
5 if(Pj ≥ 0.5)
6 Apply aging (Vth increment of 0.01V) to j-th FA in Core1;
7 else
8 Apply aging (Vth increment of 0.01V) to j-th FA in Core0;
9 endfor
10 endfor

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
22

can also be an efficient trade-off between the post-processing cost and PUF quality standard

(or yield of the manufactured PUF), though analyzing the detailed trade-off between them is

out of scope of this work.

3.3.4 Reliability and security discussions on aging

For our PUF design, there are several security, reliability, and maintainability issues on

aging: malicious usage of our aging algorithm and natural aging effect. In this subsection, we

address those issues and introduce possible countermeasures.

3.3.4.1 Malicious usage of our algorithm

An adversary may try to make the PUF responses of a certain chip as he or she desires by

using our algorithms’ capability of changing the PUF responses. For example, the adversary

can try to use our aging algorithm in the opposite way, which may make the statistical

property of our PUF worsened. One possible way to prevent this attack is to deploy aging

sensors [23][24], which can detect how much the circuit is aged by measuring the frequency

of ring oscillators or delay elements. If the aging sensor detects a certain degree of the aging

within a short time period, the OS can enforce the PUF to reside in a sleep mode so that the

ALU can be cooled down and stop executing the malicious code. As another solution, already

employed thermal sensors can also detect the execution of the malicious code for malicious

aging. This is because the malicious code which tries to age the PUF by an adversary should

intensively access the ALU, which makes it significantly hot. It triggers dynamic thermal

management (DTM) to prevent thermal emergency in a microprocessor [18][25]. The DTM

also cools down the ALU by engaging the coercive sleep mode in the microprocessor. Since

the NBTI aging heavily depends on the circuit temperature, cooled ALUs are affected little

from the malicious aging by the adversary.

3.3.4.2 Natural aging and recovery due to the NBTI

The natural aging may affect the PUF responses. However, there are two important

reasons which support the claim that our PUF design is safe against the natural aging effect. i)

Our PUF is based on the delay comparison between two symmetric delay lines by using the

arbiter. In real usage cases, both paths are generally aged together, so that the PUF responses

are not likely to be affected by natural aging effects. ii) NBTI mechanism has a recovery

period (i.e., increased Vth due to the aging is recovered to a certain extent) when PMOS

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
23

devices are not used. It means that the PUF structure may not be aged too much under the

assumption that the most of the gates have a duty cycle of 0.5. For a safeguard mechanism,

one can also deploy the aging sensors as introduced in the previous subsection, in order to

detect the natural aging as well as malicious aging.

In addition to the natural aging, increased Vth due to our intentional aging may be

recovered by the NBTI recovery. In this case, the improved statistical property of the PUFs

may be worsened again. However, the recovered Vth by the NBTI recovery cannot reach the

original Vth due to the partial recovery of the NBTI [7]. In case that a high degree of natural

NBTI recovery is expected, one can make that the partial recovery from NBTI hardly affects

the PUF responses (e.g., further conducting the aging process considering the expected partial

recovery). Note that quantifying the impact of NBTI recovery and investigating a detailed

mechanism for the aging process considering the NBTI recovery are out of the scope of this

work. We leave them as our future work.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
24

4. RESULTS AND DISCUSSION

4.1 Evaluation setup

Our evaluation results are based on an accurate gate-level delay simulation framework.

We gave a threshold voltage (Vth) variation to each chip instance. Though, in the case of Vth,

random variation is known to be more remarkable than systematic variation [1], Vth

distributions are also spatially correlated [2][21][26]. Hence, we used a quad-tree process

variation model [1] to precisely model both the random and systematic variation of the Vth.

Assuming Vth distributions in a chip follow the normal distribution N(μ, σ2), we considered

three different process variation severities: 3*σ/μ =Vth*20%, Vth*30%, and Vth*40%. We

generated 1,000 different chip instances for our Monte Carlo simulations for each process

variation severity. Our ALU (adder) model is based on the Xilinx fast ripple-carry adder

model [27]. The placement information is used to map Vth parameters (generated by [1]) to

each gate in a chip. We obtained a nominal gate delay from HSPICE circuit simulations with

45nm process technology. By using Equation 1, we figured out delay of each gate according

to Vth of that gate. Note that we exclude the simulation results when the additional XOR

obfuscation step is deployed since it is not essential but optional in our PUF design.

4.2 Statistical results for two-core PUFs

4.2.1 Inter-chip variations

In this subsection, we present inter-chip variation results of our two-core PUF for both

32-bit and 64-bit ALUs. To quantify the inter-chip variations, we measure inter-chip

Hamming distances between different PUF instances when we feed the same challenge

program to both cores. We show the average inter-chip Hamming distance results from

1,000,000 different challenge inputs (challenge programs).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
25

Table 3 shows the inter-chip Hamming distances (mean and standard deviation) across

three difference process variation severities. As Table 3 suggests, uniqueness of our two-core

PUF is comparable to the existing strong PUF designs [4]. On average, the inter-chip

Hamming distance is 12.35 bits (38.61% - ideally 50%) within the 32-bit responses.

Regardless of process variation severities (3*σ/μ =Vth*20%, Vth*30%, and Vth*40%), the

inter-chip variations are shown to be around 38%. It means that our two-core PUF can be a

low-overhead alternative for conventional strong PUFs.

We also provide the results for 64-bit two-core PUF design since many commodity

microprocessors are using the 64-bit datapath. Across three process variation severity cases,

the average inter-chip Hamming distance is 22.51 bits (35.16%).

4.2.2 Intra-chip variations

In this subsection, we present intra-chip variation results under various environmental

circumstances. We consider three cases that can affect the intra-chip variations: voltage

TABLE 3
Average inter-chip Hamming distance results

Mean

3*σ/μ Vth*20% Vth*30% Vth*40%

32-bit output 12.38 (38.69%) 12.21 (38.16%) 12.48 (39.00%)

64-bit output 22.67 (35.42%) 21.92 (34.25%) 22.92 (35.81%)

Standard deviation

3*σ/μ Vth*20% Vth*30% Vth*40%

32-bit output 2.76 2.75 2.76

64-bit output 3.83 3.80 3.84

TABLE 4
Average intra-chip Hamming distance variation results under 1,000,000 different

challenge inputs.

Mean

3*σ/μ Vth*20% Vth*30% Vth*40%

32-bit output 3.59 (11.22%) 2.77 (8.66%) 1.36 (4.25%)

64-bit output 6.76 (10.56%) 5.06 (7.91%) 3.31 (5.17%)

Standard deviation

3*σ/μ Vth*20% Vth*30% Vth*40%

32-bit output 1.79 1.59 1.14

64-bit output 2.46 2.16 1.77

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
26

variation, temperature variation, and arbiter metastability.

Table 4 shows intra-chip variation results. To estimate the intra-chip variations, we first

give the same challenge to the same chip by 11 times and collect the PUF responses. Each of

11 PUF operations is performed under random environmental conditions (the voltage and

temperature are randomly selected within the range of 1.0V-1.2V and 253K-393K,

respectively). Arbiter metastability also generates some noise to PUF responses. Intra-chip

Hamming distance results are collected under 1,000,000 different challenge inputs and also

averaged out to obtain the final results.

As shown in Table 4, the average intra-chip Hamming distances are 2.58 bits and 5.04

bits (8.05% and 7.88% - ideally 0%), in the case of 32-bit ALUs and 64-bit ALUs,

respectively. Since our PUF design is based on the delay comparison mechanism of the

arbiter, most of the intra-chip variations are due to the arbiter metastability. One thing worth

noting is the intra-chip Hamming distances under more severe process variation scenarios

tend to be lower. This is because the delay differences between two symmetric delay paths

tend to be higher under severe process variations, which makes our PUF more robust under a

certain level of the environmental variations.

Though the intra-chip Hamming distances under less severe process variation scenarios

may seem to be non-negligible, it can be alleviated by our post-silicon intentional aging

algorithms. The post-silicon tuning results for intra-chip variation reduction will be presented

in Section 4.3.2.

4.3 Statistical results for post-silicon tuning

4.3.1 For inter-chip variation improvement

To figure out the effectiveness of our proposed intentional aging method, we performed a

Monte Carlo simulation with 1,000 different chip instances. The process variation severity is

TABLE 5
Average inter-chip Hamming distance results before and after our intentional aging

process.

Normal case Extreme case

Before aging 12.47 (38.96%) 5.79 (18.10%)

After aging 14.47 (45.23%) 13.58 (42.45%)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
27

3*σ/μ = Vth*30%. In this subsection, we provide two different practical cases to apply our

intentional aging method to increase interchip variations. The first is a normal case where the

delay of two cores is not significantly biased. The other is an extreme case in which the delay

of two cores is significantly biased [19]. For the extreme case, after generating the chip

instances using the quad-tree process variation model, we gave an additional 5% delay bias

effect between two cores in each chip instance so that the ALU in one core tends to be faster

than that in the other core.

Table 5 shows average inter-chip Hamming distance (HD) results before and after our

intentional aging process. Before applying our intentional aging process, the baseline (before

aging) inter-chip HD is 12.47 (12.47/32=38.96% - 50% is an ideal case) and 5.79

(5.79/32=18.10%) for the normal and extreme case, respectively. It is quite natural that the

inter-chip HD for the extreme case is lower than that for the normal case because it has a

higher possibility not to have unique responses but to have biased responses across the

different chip instances. For the normal case, after applying Alg. 1 with k=20, the inter-chip

HD becomes 14.47 (14.47/32=45.23%), which means uniqueness of the PUF responses across

different chips is significantly improved. For the extreme case, the average inter-chip HD

becomes up to 13.58 (13.58/32=42.45%). It implies that our intentional aging method makes

the chip instances practically usable even in the case that a significant delay bias exists

Fig. 10. Average inter-chip Hamming distance results with regard to the number of

iterations (k) in Alg. 1.

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 1011 121314151617181920

Normal case Extreme case

k (# of iterations)

A
vg

.in
te

r-c
hi

p
H

D

50%

37.5%

25%

12.5%

0%

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
28

between two cores due to systematic process variations.

To see how one can determine the parameter k in practice, we also show a trend of the

inter-chip HD as we increase k in Figure 10. After 7 iterations (i.e., Vth increase by at most

0.07V via our intentional aging), the inter-chip HD is almost saturated. In other words, only

with 7 iterations one can gain the maximum obtainable uniqueness for a certain set of the chip

samples.

4.3.2 For intra-chip variation reduction

Figure 11 shows effectiveness of Alg. 2. Before applying Alg. 2, the average intra-chip

Hamming distance (HD) is 3.77 (3.77/32=11.78% - 0% is an ideal case), which implies there

exist Hamming distances of 3-4 bits upon the repetitive measurements with the same

challenge. However, after applying Alg. 2 to each chip with k=20, the intra-chip HD is

reduced to 0.07 (0.07/32=0.26%), which implies a significant the intra-chip HD reduction.

With only 3 iterations of our algorithm (i.e., Vth increase by at most 0.03V via our intentional

aging), one can get the intra-chip HD values below 1.0, which implies that there is an average

of at most only one-bit Hamming distances within the 32-bit responses upon the repetitive

measurements. In this case, one can deploy a light-weight error correction method (e.g.,

single error correction double error detection) instead of the high overhead error correction

methods such as BCH coding [5][6]. If the PUF designers want to make the PUF responses in

terms of intra-chip variations more robust, it is possible to apply a higher k in Alg. 2.

Fig. 11. Average intra-chip Hamming distance results with regard to the number of

iterations (k) in Alg. 2.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
vg

.in
tra

-c
hi

p
H

D

k (# of iterations)

12.5%

9.375%

6.25%

3.125%

0%

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
29

Figure 12 shows the average intra-chip HD per bit results within the 32-bit responses

before and after applying Alg. 2 with k=20. It is measured by slicing the 32-bit response into

each bit and measuring the HD for each bit i of the PUF responses in the intra-chip sample

spaces. Though the average intra-chip HD per bit depends on the delay characteristics of each

chip, after applying Alg. 2, the intra-chip HD of bit i becomes under 0.01 for all is (1-32),

which means the bit responses become very stable across different environmental conditions.

On average, our algorithm reduces the average intra-chip HD of bit i from 0.11 to 0.002 after

20 iterations of the intentional aging process, which means the average intra-chip HD per bit

is reduced by 98%.

5. RELATED WORK

5.1 Physically Unclonable Functions (PUFs)

A plausible method for unique and unclonable identification of devices and objects is

based on the inherent and hard to forge randomness or disorder of their underlying physical

fabrics. To overcome the exposure associated with storage of digital keys, a novel class of

secret embedding, storage, and extraction widely known as PUFs has emerged. The secret

generation and storage mechanisms in PUFs are based on the inherent disorder present in the

silicon [3]. Memory-based PUFs, which are a type of weak PUFs [4][28][29], are typically

used for secure key storages. Arbiter PUFs [6], that are known to belong to the strong PUF

family, are composed of a series of switches (MUXes), which change delay paths according

to the input challenge bits. For better statistical properties and to make the structure resilient

Fig. 12. Average intra-chip Hamming distance of bit i (i=1-32) results within 32-bit

responses before and after applying Alg. 2 with k=20.

0

0.06

0.12

0.18

0.24

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

Before aging After aging

Bit number i (1~32)

A
vg

.in
tra

-c
hi

p
H

D
 o

f b
it

i

24%

18%

12%

6%

0%

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
30

to modeling attacks, different PUF outputs can also be XORed [30]. Ring-oscillator (RO)

PUFs [6] are composed of a long chain of inverters. Glitch PUFs [31] exploit a glitch

propagation variability along the delay paths. In [5] and [32], the PUF structures combined

with microprocessor architecture are proposed. Apart from PUF design studies, there exists

work in literature on detailed analysis [33][34], formal models [35], and modeling attacks on

PUFs [16].

In this work, we proposed a new strong PUF design, which is fundamentally based on

delay comparison between two symmetric paths by using arbiters. Our PUF design is

instruction-controlled, and leverages built-in components, i.e., arithmetic logic unit (ALU) in

a classic processor architecture for path delay sources instead of deploying separate delay

sources as presented in [6].

5.2 Leveraging aging to PUFs and circuits

Circuit aging is a common mechanism by which performance of the circuits is degraded

as they are used. Though a large body of work for aging resilience in circuit structures has

been studied, in this work, we focus on the case where one leverages the intentional aging of

the PUFs for tuning the statistical properties of the PUF responses. Reference [36] provided

the first set of formal properties for the statistical distribution of the PUF responses in terms

of the inter-chip and intra-chip variation.

A hardware aging-based software metering technique [37] precisely tracks the software

usage by feeding the test vectors to the specific circuit. Device aging-based PUF design [38]

leverages aging mechanism to shape the PUF responses. It can also be used for a graduation

of the PUF responses which is robust to PUF modeling attacks or for better statistical

properties of the PUF by changing the PUF responses. Public PUFs (PPUFs) [39][40][41]

leverage the aging to shape the PUF responses. The main purpose of applying aging to PPUFs

is to make the responses of the PUFs, which are shared among the trusted parties, identical for

low-power consumption and fast authentication. Leveraging intentional aging for generating

stable outputs in SRAM (static random access memory) PUFs was also proposed [42].

Negative bias temperature instability (NBTI) aging mechanism enables a more stable output

generation from SRAM PUFs.

To the best of our knowledge, our work is the first to introduce systematic aging of a

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
31

strong PUF (two-core PUF) to get a better statistical distribution of PUF responses (i.e.,

signatures) both in terms of inter-chip and intra-chip variations.

6. CONCLUSION

We proposed a two-core strong PUF architecture. Our design is low overhead and robust

to systematic variations because of its inherently symmetric construction. To improve the

statistical distribution of the PUF outputs, we devised a novel intentional aging algorithm

which makes the PUF instances much more secure and stable in terms of both inter- and

intra-chip variations. Our evaluation results suggest that our proposed algorithms greatly

improve the quality of the PUF challenge-response statistical properties. By applying the

algorithm to increase inter-chip variations, one can obtain the PUF responses which have

higher uniqueness across different chip instances. Also, the algorithm to reduce intra-chip

variations make our PUF much more robust to the environmental fluctuation, which also

enables a deployment of low overhead error correction schemes for robustness and stability of

our PUFs.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
32

3.4 7. REFERENCES
[1] B. Cline, K. Chopra, D. Blaauw, and Y. Cao, “Analysis and modeling of CD variation for

statistical static timing,” in Proceedings of the 2006 IEEE/ACM international conference on
Computer-aided design, 2006, pp. 60–66.

[2] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas, “VARIUS:
A model of process variation and resulting timing errors for microarchitects,” IEEE Transactions on
Semiconductor Manufacturing, vol. 21, no. 1, pp. 3–13, 2008.

[3] U. Ruhrmair, S. Devadas, and F. Koushanfar, Security based on Physical Unclonability and
Disorder. Springer, 2011.

[4] R. Maes and I. Verbauwhede, Physically Unclonable Functions: a Study on the State of the Art
and Future Research Directions. Springer, 2010.

[5] G. E. Suh, C. W. O’Donnell, and S. Devadas, “AEGIS: A single-chip secure processor,” Inf.
Secur. Tech. Rep., 2005.

[6] G. E. Suh and S. Devadas, “Physical unclonable functions for device authentication and secret
key generation,” in Proceedings of the 44th annual Design Automation Conference, 2007, pp. 9–14.

[7] R. Vattikonda, W. Wang, and Y. Cao, “Modeling and minimization of PMOS NBTI effect for
robust nanometer design,” in Proceedings of the 43rd annual Design Automation Conference, 2006, pp.
1047–1052.

[8] D. Markovic, C. Wang, L. Alarcon, T.-T. Liu, and J. Rabaey, “Ultralow-power design in
near-threshold region,” Proceedings of the IEEE, vol. 98, no. 2, pp. 237–252, 2010.

[9] F. Najm, “A survey of power estimation techniques in vlsi circuits,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 2, no. 4, pp. 446–455, 1994.

[10] M. Majzoobi and F. Koushanfar, “Time-bounded authentication of FPGAs,” IEEE
Transactions on Information Forensics and Security, vol. 6, no. 3, pp. 1123–1135, 2011.

[11] S. Schulz, A.-R. Sadeghi, and C. Wachsmann, “Short paper: Lightweight remote attestation
using physical functions,” in Proceedings of the fourth ACM conference on Wireless network security,
2011, pp. 109–114.

[12] S. Devadas, G. E. Suh, S. Paral, R. Sowell, and T. Ziola, “Design and implementation of
PUF-based unclonable RFID ICs for anti-counterfeiting and security applications,” in IEEE
International Conference on RFID, 2008, pp. 58–64.

[13] L. N. Chakrapani, K. K. Muntimadugu, A. Lingamneni, J. George, and K. V. Palem, “Highly
energy and performance efficient embedded computing through approximately correct arithmetic: a
mathematical foundation and preliminary experimental validation,” in Proceedings of the 2008
international conference on Compilers, architectures and synthesis for embedded systems, 2008, pp.
187–196.

[14] Z. M. Kedem, V. J. Mooney, K. K. Muntimadugu, and K. V. Palem, “An approach to
energy-error tradeoffs in approximate ripple carry adders,” in Proceedings of the 17th IEEE/ACM
international symposium on Low-power electronics and design, 2011, pp. 211–216.

[15] D. G. Bailey, Design for Embedded Image Processing on FPGAs. John Wiley & Sons, 2011.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
33

[16] U. R¨ uhrmair, F. Sehnke, J. S¨ olter, G. Dror, S. Devadas, and J. Schmidhuber, “Modeling
attacks on physical unclonable functions,” in Proceedings of the 17th ACM conference on Computer
and communications security, 2010, pp. 237–249.

[17] M. Majzoobi, M. Rostami, F. Koushanfar, D. Wallach, and S. Devadas, “Slender puf protocol:
A lightweight, robust, and secure authentication by substring matching,” in 2012 IEEE Symposium on
Security and Privacy Workshops (SPW), 2012, pp. 33–44.

[18] J. Kong, S. W. Chung, and K. Skadron, “Recent thermal management techniques for
microprocessors,” ACM Computing Surveys, vol. 44, no. 3, pp. 13:1–13:42, 2012.

[19] E. Humenay, D. Tarjan, and K. Skadron, “Impact of process variations on multicore
performance symmetry,” in Proceedings of the conference on Design, automation and test in Europe,
2007, pp. 1653–1658.

[20] D. A. Patterson and J. L. Hennessy, Computer Organization and Design - The Hardware /
Software Interface (Revised 4th Edition), ser. The Morgan Kaufmann Series in Computer Architecture
and Design. Morgan Kaufman, 2012.

[21] J. Kong, Y. Pan, S. Ozdemir, A. Mohan, G. Memik, and S. W. Chung, “Fine-grain voltage
tuned cache architecture for yield management under process variations,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 20, no. 8, pp. 1532–1536, 2012.

[22] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “NBTI-aware synthesis of digital circuits,” in
Proceedings of the 44th annual Design Automation Conference, 2007, pp. 370–375.

[23] M. Chen, V. Reddy, S. Krishnan, V. Srinivasan, and Y. Cao, “Asymmetric aging and workload
sensitive bias temperature instability sensors,” IEEE Design & Test of Computers, vol. 29, no. 5, pp.
18–26, 2012.

[24] M. Valdes-Pena, J. Fernandez Freijedo, M. Moure Rodriguez, J. Rodriguez-Andina, J. Semiao,
I. Teixeira, J. Teixeira, and F. Vargas, “Design and validation of configurable online aging sensors in
nanometer-scale FPGAs,” IEEE Transactions on Nanotechnology, vol. 12, no. 4, pp. 508–517, 2013.

[25] J. Kong, J. K. John, E.-Y. Chung, S. W. Chung, and J. S. Hu, “On the thermal attack in
instruction caches,” IEEE Transactions on Dependable and Secure Computing, vol. 7, no. 2, pp.
217–223, 2010.

[26] J. Kong and S. W. Chung, “Exploiting narrow-width values for process variation-tolerant 3-D
microprocessors,” in Proceedings of the 49th Annual Design Automation Conference, 2012, pp.
1197–1206.

[27] P. Zicari and S. Perri, “A fast carry chain adder for Virtex-5 FPGAs,” in 15th IEEE
Mediterranean Electrotechnical Conference (MELECON), 2010, pp. 304–308.

[28] D. Holcomb, W. Burleson, and K. Fu, “Power-up SRAM state as an identifying fingerprint and
source of true random numbers,” IEEE Transactions on Computers, vol. 58, no. 9, pp. 1198–1210,
2009.

[29] S. S. Kumar, J. Guajardo, R. Maes, G. J. Schrijen, and P. Tuyls, “The butterfly PUF:
Protecting IP on every FPGA,” in IEEE International Workshop on Hardware-Oriented Security and
Trust, 2008, pp. 67–70.

[30] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure PUFs,” in Proceedings of
the 2008 IEEE/ACM International Conference on Computer-Aided Design, 2008, pp. 670–673.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
34

[31] D. Suzuki and K. Shimizu, “The glitch PUF: a new delay-PUF architecture exploiting glitch
shapes,” in Proceedings of the 12th international conference on Cryptographic Hardware and Embedded
Systems, 2010, pp. 366–382.

[32] A. Maiti and P. Schaumont, “A novel microprocessor-intrinsic physical unclonable function,”
in 22nd International Conference on Field Programmable Logic and Applications (FPL), 2012, pp.
380–387.

 [33] S. Katzenbeisser, U¨ nal Kocabas, V. Rozic, A.-R. Sadeghi, I. Verbauwhede, and C.
Wachsmann, “PUFs: Myth, Fact or Busted? a security evaluation of physically unclonable functions
(PUFs) cast in silicon,” in Proceedings of the 14th international conference on Cryptographic Hardware
and Embedded Systems, 2012, pp. 283–301.

[34] M.-D. M. Yu, R. Sowell, A. Singh, D. M’Ra¨ıhi, and S. Devadas, “Performance metrics and
empirical results of a PUF cryptographic key generation ASIC,” in IEEE International Workshop on
Hardware-Oriented Security and Trust, 2012, pp. 108–115.

[35] F. Armknecht, R. Maes, A.-R. Sadeghi, F.-X. Standaert, and C. Wachsmann, “A formalization
of the security features of physical functions,” in Proceedings of the 2011 IEEE Symposium on
Security and Privacy, 2011, pp. 397–412.

[36] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Techniques for design and implementation
of secure reconfigurable PUFs,” ACM Transactions on Reconfigurable Technology and Systems, vol. 2,
no. 1, pp. 5:1–5:33, 2009.

[37] F. Dabiri and M. Potkonjak, “Hardware aging-based software metering,” in Proceedings of the
Conference on Design, Automation and Test in Europe, 2009, pp. 460–465.

[38] S. Meguerdichian and M. Potkonjak, “Device aging-based physically unclonable functions,” in
Proceedings of the 48th Design Automation Conference, 2011, pp. 288–289.

[39] M. Potkonjak, S. Meguerdichian, A. Nahapetian, and S. Wei, “Differential public physically
unclonable functions: architecture and applications,” in Proceedings of the 48th Design Automation
Conference, 2011, pp. 242–247.

[40] S. Meguerdichian and M. Potkonjak, “Matched public PUF: ultra low energy security
platform,” in Proceedings of the 17thIEEE/ACM international symposium on Low-power electronics
and design, 2011, pp. 45–50.

[41] ——, “Using standardized quantization for multi-party PPUF matching: Foundations and
applications,” in Proceedings of the International Conference on Computer-Aided Design, 2012, pp.
577–584.

[42] M. Bhargava, C. Cakir, and K. Mai, “Reliability enhancement of bi-stable PUFs in 65nm bulk
CMOS,” in IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), 2012,
pp. 25–30.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
35

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

ALU Arithmetic Logic Unit
CRP Challenge-Response Pair
DTM Dynamic Thermal Management
FA Full Adder
HCI Hot Carrier Injection
HD Hamming Distance
ILP Instruction-Level Parallelism
Leff Effective gate length
MEM Memory
MUX Multiplexor
NAND Negated AND
NBTI Negative-Bias Temperature Instability
Oses Operating Systems
PMOS P-type Metal-Oxide-Semiconductor
PPUF Public Physically Unclonable Function
PUF Physically Unclonable Function
PV Process Variation
RCA Ripple Carry Adder
RF/ID Register File/Instruction Decode
RFID Radio-Frequency IDentification
RO Ring Oscillator
SP Signal Probability
SRAM Static Random Access Memory
Vdd Supply voltage
Vth Threshold voltage
XOR Exclusive OR
ΔVth Vth shift

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

３６

	1 SUMMARY
	2 INTRODUCTION
	3 METHODS, ASSUMPTIONS AND PROCEDURES
	3.1 Background and preliminaries
	3.1.1 Process variation
	3.1.2 Delay model
	3.1.3 Aging model

	3.2 Two-core PUF
	3.2.1 Design philosophy and design decisions
	3.2.1.1 Base platform - multi-core microprocessor
	3.2.1.2 Path delay source - ALUs

	3.2.2 Overall design
	3.2.2.1 PUF design
	3.2.2.2 Security enhancement by XOR obfuscation

	3.2.3 Detailed design and architectural modifications
	3.2.4 Challenge procedure
	3.2.5 Practicality issues
	3.2.5.1 Intermediate signal fluctuations in the output port
	3.2.5.2 Sorting of the valid and invalid output bits
	3.2.5.3 Runtime temperature difference between two cores

	3.2.6 Implementation overhead

	3.3 Post-silicon tuning of two-core PUF via intentional aging
	3.3.1 High-level description of our post-silicon tuning
	3.3.1.1 Rationale
	3.3.1.2 Strategy
	3.3.1.3 Figuring out the input vectors for aging
	3.3.1.4 Sample spaces to measure the statistical properties

	3.3.2 Aging algorithm to increase inter-chip variations

	3.4 7. REFERENCES

